
Automatic Number Plate Recognition in Python3 on low-cost hardware

SJM@MCL 2018 www.marvellconsultants.com

UKRegOCR: Cross-platform UK number-plate reader Python3 module

Limitations

The code is optimised only for the standard UK number-plate font, some older UK
plates do not use the proper font and so may fail to read correctly. It can only read
single-line plates, 2-line plates are not recognised. The plate must be reasonably
horizontal (within 10 degrees) in order to be recognised. It's also fairly slow - budget
for about 1s/read on a fast, multi-core Intel/AMD x86 linux PC, 1.6s/read average on
an Ubuntu UPSquared Pentium N4200, but much slower on a Raspbian Raspberry
Pi 3b @ about 7.5s/read (10% faster on a 3b+). If these limitations aren't too serious
in your application then please evaluate UKRegOCR for yourself and let me know
what you think. Also let me know if you find any bugs or have any ideas for
improvements. The code is provided free and completely without warranty as per the
usual legal blah blah.

Installing and evaluating UKRegOCR

Python v3.5 or later is required along with OpenCV (cv2) and PILlow python
packages - see resources section below. I developed and tested with Python v3.6.3
on Windows / v3.5.2 on Ubuntu, cv2 v3.3.1, NumPy v1.14.0 and PILlow (PIL) v4.3.0.

OpenCV and PILlow (note that PILlow is only required by Example.py) should first be
installed following any of the detailed guides available on the internet for your
platform, Google it. See below for detailed UPSquared/linux installation instructions.

Now download MCL's UKRegOCR components from:

http://www.marvellconsultants.co.uk/ANPR/UKRegOCR.zip

Extracting to an empty directory, you should see 5 files & a samples folder:

UKRegOCR.py is the core OCR module
Example.py a sample python script which imports and demos the above module
OCRFonts.py holds the UK font bit-map templates
UKPlates66x20P.xml is the number-plate level Haar-cascade classifier
UKChars33_16x25_11W.xml is the character level Haar-cascade classifier
samples/ contains some test images including a couple of failure examples

Download UKNumberPlate.ttf true-type font file from:

https://www.dafont.com/uk-number-plate.font

Save it to the same directory, note this is only required by Example.py. Finally, run
the example script with python v3.x:

python3 Example.py

1

All being well Example.py should sequence through the images in the samples folder
and print the results of each attempted read. On the last image (only) the script
should also display an annotated thumbnail and a calculation of the average read-
time.

To test it on your own images you can add a file or folder name to the Example.py
command-line, eg:

python3 Example.py my_folder/*.jpg

Camera set-up

The reader works best with characters of at least 25 pixels in height. To minimise
motion-blur use a faster shutter speed where possible. Minimise any artificial/added
"sharpness" in the camera's output image if at all possible. Minimise JPG artefacts
by prioritising image quality rather than small file size. Arrange for the plate to appear
as horizontal as possible in the image, you may need to apply your own affine
transform prior to the read attempt. The code works identically with monochrome
images, for example from infra-red cameras, although obviously it will be unable to
determine the plate's b/g colour.

Under the Hood

UKRegOCR employs a 6 stage process as follows.

Stage1, plate detection: this vital first step uses OpenCV's Haar-cascade
classification function trained on several thousand images of UK number-plates.
With the correct training this function can reliably detect the presence and location of
the desired target object at any scale in a source image. The result of the massively
long winded training process (it can take days of processing time) is embodied in a
surprisingly compact xml file which somehow, magically, defines the salient features
of the target. The output of the multi-scale detector is a list of bounding-boxes
indicating where in the source image the target object appears. The code narrows
the output down to just one candidate and crops the input image to a more
manageable size around the target area.
A more meaningful contrast-stretch (using histogram equalisation) can now be
performed on the smaller image. To find out more about Haar-cascade classification
simply Google it, there's plenty of information out there.

Stage 2, affine transformation: this stage detects and corrects any small rotational
deviation from the horizontal (up to 10 degrees), this is done using a sequence of
three OpenCV functions: adaptive thresholding followed by edge-detection then a
Hough Lines scan. Correction uses an affine transform. A similar process is
deployed to detect and correct any skew (up to 10 degrees) in the individual
characters - especially important after a rotation. Since the number-plate classifier
will not recognise plates that deviate too much from the horizontal there's little point
improving the code to cope with larger angles. Some very old UK plates feature
white characters on a black background, these are detected here and the image is
simply inverted if necessary, in readiness for the subsequent stages.

Stage 3, estimate character height: here again we employ a Haar cascade classifier
this time trained to look for individual UK number-plate font characters. This
classifier works less well than the plate classifier but usually provides enough

2

information to make a better estimate of the character height. The results from this
detection are also used to feed back into the rotation detector/corrector above. An
alternative method makes use of a Sobel filter followed by thresholding and a
morphology closure stage to produce a solid block around character-like features,
the block size is measured to produce a second estimate of character height which
is statistically combined with the Haar-cascade result.

Stage 4, template matching: given a reasonable estimate of character height,
template characters can now be produced to that dimension (using the PILlow
package and the UKNumberPlateFont TTF file) to match against the plate image
with OpenCV's matchTemplate function. The output from which is an array of cross-
correlation coefficients for each pixel of the source image, one array per character.
Note that there are really only 34 characters in the font as O & 0 and I & 1 are
identical. The locations of the highest peaks in the output arrays indicate where
characters are likely to be found. This process is repeated for incrementally taller
and shorter character sizes each time searching for the best cross-correlation peaks
and thus the best match to character height. That whole process is then repeated
again for incrementally varying character widths until finally the optimum character
size is found. BTW doing these sequences of 34 template-match passes is what
takes most of the processing time. A couple of optimisations are employed in the
above process to speed things up: the area of interest is reduced as much as
possible, as is the character-set, prior to each template-match pass. Some further
statistical analysis produces a list of best-guess candidates.

Stage 5, I characters: stage 4 actually only concerns itself with the 33 non-I
characters, these are dealt with separately due to the anomalous width of the I (or 1)
character. Candidate I characters are now sought in the image and added to the
result from stage 4.

Stage 6, finish up: The candidate list is statistically examined for positional
anomalies, over-laps, stragglers and notably weak correlation coefficients. It is
pruned accordingly before being matched to a list of valid UK number plate format
specifications. During this stage 0/O and I/1 choices are made and swap-outs of
commonly misread character pairs may be made in order to optimise the match to a
valid format. Common misread pairs are: '8':'B', 'B':'8', 'Z':'7', '7':'Z', '6':'G', 'G':'6',
'5':'S', 'S':'5', 'D':'0', 'Q':'0'. A more accurate bounding-box for the plate is now
computed and if the source image was not monochrome the background colour of
the plate can also be determined. Finally an estimate of read confidence is derived
from the average correlation coefficient and the quality of match to a valid plate
format with format commonness also taken into account.

UKRegOCR module documentation

The UKRegOCR module exposes three functions:
UKRegOCR(img, target_size)

lookForPlate(img, target_size)

WhtOrYel(img, AOI)

img:
An OpenCV image array, colour or monochrome, as returned by cv2.imread()

target_size:
A (Width, Height) tuple that approximates to the average, mid-field size in pixels of a

3

UK number plate as imaged by the camera. The plate should be roughly horizontal
and reasonably undistorted, the reader can theoretically cope with up to 10 degrees
of rotation and skew in the input image. Pre-process your images with one of
openCV's affine transforms if necessary. Note that a plate height of 50 pixels
corresponds to a character height of about 33 pixels, the reader works well down to
a character-height lower limit of around 25 pixels, less well below that.

AOI:
Optional, an (X,Y,W,H) tuple defining an area of interest within the source image
over which to evaluate background colour. X & Y are measured down from the top
left in pixels.

UKRegOCR() is the main plate-reading function it returns either a four element tuple in
the event of a successful read or an error message string. The tuple contains:

'reg', confidence, (plate-location-AOI), 'plate_colour'

as: string, int 0..99, (X, Y, W, H), ['W'|'Y'|'B'|'-'] respectively
For example:

'AB12CDE', 92, (100,200,200,60), 'Y'

A plate_colour of '-' implies that it was not possible to asses the colour.
A confidence of 0 implies failure to fit the read data to a valid UK plate format.
A confidence of <70 implies a character-swap was requited for a UK format match.
(X,Y,W,H) are in integer pixels wrt to the top-left corner of the source image.
An example error message might be: '!no plate'

lookForPlate() is an interface to the Haar-cascade classifier for UK number plates,
pass it an image and a target_size and it will return a tuple containing either (0,0,0,0)
if no plate is detected or an (X,Y,W,H) AOI specification.

WhtOrYel() is an interface to the plate background colour detector, pass it an image
and an optional AOI tuple and it will return a single character either 'W','Y','B' or '-'
indicating respectively White, Yellow, Black, unknown.

Installation on an UPsquared board from scratch, step by step.

Follow instructions at:
https://downloads.up-community.org/download/up-squared-iot-grove-development-
kit-ubuntu-16-04-server-image/
to download ubuntu server 16.04 server image & Tuxboot. Next make the bootable
USB stick as instructed but noting that step 3 should point you to
"ubuntu_16.04_server_image_for_up_squared_r1.zip".

Boot the UP2 from the USB stick (screen, kbd & network attached) and allow
tuxboot/clonezilla to set up the on-board flash. The UP2 will finish by powering itself
down, after which remove the bootable USB media and switch back on (with the little
button). Checkout the 1st ubuntu boot sequence on the monitor. Figure out the
UP2's IP address - AaeonTec mac addrs are labeled on the CAT5 ports - and SSH
(port22, putty) into the UP2 using 'upsquared' as both user-name and password.If
that all worked...

sudo apt-get update

4

sudo apt-get upgrade
check that python3 is pre-loaded, then get its pip...
sudo apt-get install python3-pip
get opencv and numpy...
sudo pip3 install opencv-python
get PILlow dependencies & PILlow...
sudo apt-get install libtiff5-dev libjpeg8-dev \
zlib1g-dev libfreetype6-dev liblcms2-dev \
libwebp-dev tcl8.5-dev tk8.5-dev

sudo pip3 install Pillow

Please change the default password and continue with the get UKRegOCR step as
above. Good luck.

Resources:

OpenALPR: http://www.openalpr.com/cloud-api.html
http://doc.openalpr.com/opensource.html

Python3: https://www.python.org/downloads/
OpenCV: https://opencv.org/opencv-3-4.html
PILlow: http://pillow.readthedocs.io/en/4.0.x/installation.html
UKFont: https://www.dafont.com/uk-number-plate.font
Adrian RoseBrock: https://www.pyimagesearch.com

5

